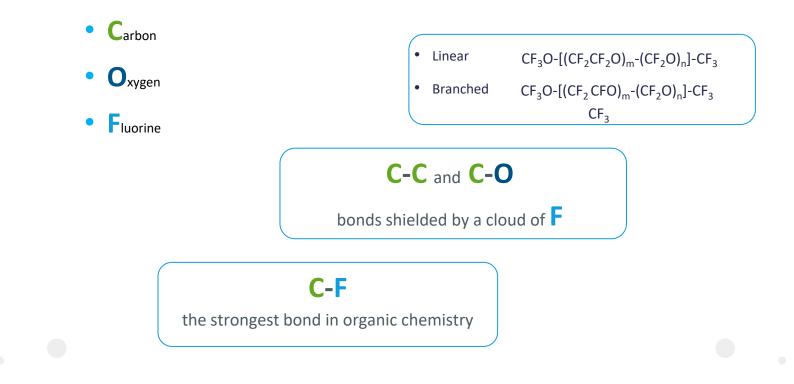


#### Comparison with other Heat Transfer fluids



Progress beyond


2023



### What are **PFPEs**

Solvay

PerFluoroPolyEthers (PFPEs) are clear and colorless fluoropolymer, liquid in a wide range of temperatures and based on a proprietary and unique technology composed entirely of:



## **PFPEs Chemistry Effect**





#### Features due to the presence of *Fluorine*

- Excellent thermal and oxidative stability
- Excellent chemical stability
- Dielectric properties
- Non flammable
- Low surface energy

#### Features due to the presence of Oxygen

- Imparts flexibility to the polymer chain
- Liquid in a very large temperature range
- Excellent flow behavior at low temperature
- Higher viscosity index (VI) for linear PFPE (higher O/C ratio)



#### **Features and benefits**



| Features                               | Benefits                                          |  |  |
|----------------------------------------|---------------------------------------------------|--|--|
| Low evaporation rate                   | Less consumption and lower cost of ownership      |  |  |
| Safety                                 | Non-flammable (no flash point), low toxicity      |  |  |
| Excellent compatibility                | Variety of plastics, metals and elastomers        |  |  |
| Wide temperature range                 | Good viscosity at low temperatures                |  |  |
| Electrical Properties                  | High dielectric strength, high resistivity        |  |  |
| Low miscibility with water and solvent | Easy to recover in case of leakage and no residue |  |  |

# **Safety First - Flash and Fire Point**

Compared to other widely used fluids and oils Galden® PFPEs have no incendiary risk

PFPE have no FLASH, no FIRE and no Autoignition point Mineral oil Syn.Hydrocarbon Synth. Aromatic Silicone oil PFPE 50 100 150 200 250 300 350 0 Approved under Autoignition Point Fire Point FM 6930 Standard Flash Point Fire Control System Flash Point: Temperature above which a fluid emits vapors that can be ignited not Fire Point: Temperature above which a fluid emits vapors that can sustain a flame Required Autoignition Point: Temperature above which a fluid combust without external ignition sources .....NTIAL

SOLVA

# **Galden® PFPE vs Polyester Comparison**



| Property          | Galden <sup>®</sup> EV110 - PFPE                                                                               | Polyester Oils                                                                                     | Synthetic<br>hydrogenated Oils<br>(alkyl, alkylbenzene, etc.)                                                      | Silicone Oils                                                                           |  |
|-------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| Flammability      | No Flash Point<br>Totally non-flammable<br>Fire extinguishing properties<br><u>FM6930 Approved</u>             | Flash Point present<br>(example: 170°C)<br>Flammable                                               | Flash Point present (example:<br>142°C)<br>Flammable<br>The less viscous/lower boiling point<br>the more flammable | Flash point present above 250°C<br>Flammable                                            |  |
| Stability         | No decomposition up to 290°C<br>No degradation over time                                                       | Oxidation possible if not<br>inhibited by additives<br>(additives deplete over time)               | Oxidation and even carbonization<br>possible if not inhibited by<br>additives (additives may deplete<br>over time) | Tend to change viscosity over<br>time due to oxidation + cross-<br>linking → "gelation" |  |
| Compatibility     | Excellent Compatibility with<br>rubbers and thermoplastics<br>(excluding only fully fluorinated<br>elastomers) | Fair compatibility with<br>thermoplastics<br>Leach out risk with elastomers<br>and their additives | Fair compatibility with<br>thermoplastics<br>Leach out risk with elastomers and<br>their additives                 | Good Compatibility with rubbers<br>and thermoplastics<br>Excluding silicones            |  |
| Water miscibility | <10 ppm                                                                                                        | More than 1000 ppm can be<br>absorbed<br>(as reported in producer's<br>brochure)                   | Typically tens to hundreds of ppm (50 to 200 ppm)                                                                  | Typically hundreds of ppm<br>(100 to 900 ppm)                                           |  |

# **Galden® PFPE vs Polyester Comparison**



| Property                            | Galden <sup>®</sup> EV110 - PFPE                                                                    | Polyester Oils                                                                                                                                        | Synthetic<br>hydrogenated Oils<br>(alkyl, alkylbenzene, etc.)                                                                                         | Silicone Oils                                                                                                                                         |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Recyclability/<br>Reuse             | Infinitely recyclable/reusable<br>if kept below its degradation<br>point                            | Degrades over time and will need<br>to be changed and disposed<br>Recyclability is questionable                                                       | Degrades over time and will need<br>to be changed and disposed<br>Recyclability is questionable                                                       | Degrades over time and will need<br>to be changed and disposed<br>Recyclability is questionable                                                       |  |
| Electrical<br>Resistance            | Extremely High<br>Very stable over time                                                             | Very High<br><u>but</u> : could be influenced by water<br>absorption                                                                                  | Very High<br><u>but</u> : carbonization can reduce<br>resistivity                                                                                     | Very High<br><u>but</u> : could be influenced by water<br>absorption                                                                                  |  |
| Breakdown<br>Voltage                | 40 kV at 2.54 mm                                                                                    | Since dielectric strength depends<br>on humidity rather than on the<br>product insulation quality, the<br>breakdown voltage can vary<br>significantly | Since dielectric strength depends<br>on humidity rather than on the<br>product insulation quality, the<br>breakdown voltage can vary<br>significantly | Since dielectric strength depends<br>on humidity rather than on the<br>product insulation quality, the<br>breakdown voltage can vary<br>significantly |  |
| Safety in case of accident/spillage | No odor<br>Can be easily recovered and<br>any minor residues evaporate<br>on their own<br>Non-toxic | Mild odor<br>Soluble in other oils/greases<br>making recovery more<br>challenging<br>Typically non-toxic                                              | Mild to strong odor<br>Soluble in other oils/greases<br>making recovery more<br>challenging<br>Can be toxic to aquatic<br>environment                 | Mild odor<br>Stains and easily spreads across<br>and permeates surfaces →<br>difficult to recover<br>Typically non-toxic                              |  |

# Material Compatibility (@ 25 °C)



| ✓ Good — F | air X Poor           | Synthetics<br>Hydrocarbons | Glycols      | Esters       | Silicones    | Galden®<br>Fluorinated Ethers -<br>PFPE |
|------------|----------------------|----------------------------|--------------|--------------|--------------|-----------------------------------------|
| Plastics   | Acetals              | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |
|            | Phenolics            | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |
|            | Terephthalates       | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |
|            | Polycarbonates       | $\checkmark$               | ×            | ×            | $\checkmark$ | $\checkmark$                            |
|            | A-b-s Resins         | $\checkmark$               | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Polyphenylene Oxides | $\checkmark$               | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Polysulfones         | $\checkmark$               | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Nylon (Polyamide)    | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |
|            | Polypropylene        | $\checkmark$               | —            | —            | $\checkmark$ | $\checkmark$                            |
|            | Polyethylene         | _                          | —            | —            | $\checkmark$ | $\checkmark$                            |
| Elastomers | Natural Rubber       | Х                          | Х            | Х            | $\checkmark$ | $\checkmark$                            |
|            | Buna S               | X                          | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Butyl                | X                          | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Ethylene Propylene   | X                          | —            | —            | $\checkmark$ | $\checkmark$                            |
|            | Nitrile (Buna N)     | $\checkmark$               | —            | —            | $\checkmark$ | $\checkmark$                            |
|            | Neoprene             | $\checkmark$               | X            | X            | $\checkmark$ | $\checkmark$                            |
|            | Silicone             | —                          | —            | —            | X            | $\checkmark$                            |
|            | Fluoroelastomers     | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$                            |

#### Thank you.

Please consider that all data in this presentation is not to be considered subject to specification, it is provided in good faith, for reference purposes only and it does not relieve the customer from using his best judgment and knowledge while selecting, using and processing our materials.



#### 🞯 У f in 🕒 🗞



Progress beyond

## "There are no limits to what science can explore."

**Ernest Solvay** 



solvay.com